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Abstract 

For the case where the rotation axis of the mono- 
chromator crystal and that of the small specimen 
crystal are parallel, i.e. (+, - )  or ( - ,  +)  configuration, 
the apparatus function in two-dimensional Aw, A20 
space is associated with the source, S, the mono- 
chromator crystal, M, and an idealized specimen crys- 
tal, c, which is vanishingly small and has zero mosaic 
spread. For any value of t ( = t a n  Oc/tan OM), the 
apparatus funrtion is a product of the distributions 
(with their respective loci of translation) of: (i) the 
emissivity of S; (ii) the reflectivity over the length of 
M;  (iii) the mosaic spread of M; and (iv) the 
wavelength band arising from the vector addition in 
Aw, d20 space of the wavelength dispersion of M 
and of c. To combine the apparatus function with 
other components such as the mosaic spread of a real 
specimen crystal, its physical dimension, the size of 
the aperture in front of a quantum detector or the 
point-spread function of a position-sensitive detector, 
the appropriate mathematical operation in Aoo, a20 
space is sequential convolution. Examples are given, 
for t = 0 (0.25) 1.0 (0.5) 2.0, of synthetic apparatus 
functions based on typical dimensions appropriate to 
neutron diffraction experimental arrangements. 
These are presented in Ato, A20 (°) space, which cor- 
responds to to-scan data collection. The advantage of 
modifyin~ these by affine transformation to 
Ato, A20 ( ) space or, equivalently, to correspond to 
to-20-scan data collection, is demonstrated. 

Introduction 

To obtain physically significant estimates of structure 
factors from measurement of the intensity of Bragg 
reflections from a small single crystal, c, it is a basic 
requirement to be able to establish, for each reflection, 
a suitable two-dimensional region in diffraction space 
[see Mathieson (1988a) and Mathieson & Stevenson 
(1985)] within which the intensity measurement is to 
be made, in order to ensure that consistent truncation 
limits (Denne, 1977) are selected. 
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To do this, one needs to find a way of determining 
the distribution of the diffracting power of reflections, 
referred to colloquially as its shape, as the scattering 
angle, 0c, changes. Two approaches have been taken 
in neutron diffractometry involving a mono- 
chromator. 

One approach is empirical, in that it examines the 
more intense reflections over the range of scattering 
angles and uses these to determine the effective shape 
in any given region of 0c. This knowledge is then 
utilized to deal with the weaker reflections nearby 
and to govern decisions on the measurement limits 
of these less well defined cases. Early exponents were 
Spencer & Kossiakoff (1980) and Sj61in & Wlodawer 
(1981) and variants of this approach were presented 
in preliminary form at a meeting on the position- 
sensitive detection of thermal neutrons (Convert & 
Forsyth, 1983). Latterly, more detailed accounts have 
been presented by Wilkinson, Khamis, Stansfield & 
McIntyre (1988) and Lehmann, Kuhs, McIntyre, 
Wilkinson & Allibon (1989). However, as we have 
noted (Mathieson, 1988a), there are limitations to 
this ad hoc approach, particularly as one progresses 
to higher angles and the population of intense reflec- 
tions falls while the uncertainties as to what should 
constitute the truncation limits increase. Moreover, 
evidence that the method of analysis chosen may lead 
to systematic differences has been noted by Stansfield, 
Thomas, Mason, Nelmes, Tibballs & Zhong (1983). 

The other approach is to simulate the shapes of 
the reflections on the basis of a theoretical model. 
This approach was first explored in respect of neutron 
diffractometry by Schoenborn (1983), for protein- 
crystal studies. Later, an ab initio examination was 
made by Mathieson (1988a), to identify the contribu- 
tions of the various physical factors to the reflection 
shape and how, as a result, the reflection shape in 
Aw, A20 space changed with 0(°). * The primary role 

• To identify the magnitude of the A20 offset (=nAto) for each 
step in Ato involved in affine transformation of Ato, A20 ~°) space, 
the terminology, Ato, A20 ("~ has been used (Mathieson, 1983). 
Where no identifying superscript appears, Ato, A20 (°) is to be 
understood. 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1993 



656 M O D E L L I N G  OF N E U T R O N  D I F F R A C T I O N  REFLECTIONS 

of the parameter t (=  tan 0c/tan 0M) was noted earlier 
in relation to two-dimensional reflection shapes 
(Mathieson, 1985) and its key influence in determin- 
ing shape was later stressed in Mathieson (1988a). 
To make the influence of individual contributions 
more obvious, square and triangular functions were 
used rather than smooth functions such as Gaussians. 
Provided one establishes a physically realistic model, 
one should be in a position to set consistent measure- 
ment and truncation conditions over the whole work- 
ing range of 0c even where there are few or no strong 
reflections. 

Stevenson (1989) has explored the simulation of 
reflection shapes by a different procedure and in 
greater detail than Mathieson (1988a). His procedure 
was to trace the rays from a given point in Ato, a20 
space back via the idealized (zero-mosaic, point) 
specimen crystal and the monochromator crystal to 
the source and thus generate the shape in ato, A20 
space associated with specific parameters of the com- 
ponents. Within this approach, he has given mathe- 
matical expression for the variation of the shape due 
to components of different magnitudes for any given 
value of t.* 

Since the publication of our respective papers 
[Mathieson (1988a) and Stevenson (1989), which we 
refer to from now on as M88 and $89, respectively], 
we have, more recently, been considering the com- 
patibility of our two approaches. In the process, we 
have come to realize that the situation under review 
is somewhat more subtle than it had first appeared; 
that, in two-dimensional diffraction space, not all 
components in the overall experiment are func- 
tionally equivalent. For the combination of the 
various components, one has to ensure that the mathe- 
matical operation chosen to effect combination is 
compatible with the physical operation involved. 

In the present case, it turns out that the basic 
question is when does one use convolution and when 
does one not? 

Differentiation of components 

In Alexander & Smith's (1962) modelling of one- 
dimensional profiles of Bragg reflections, the mode 
of combination of all components was the same. The 
final profile was attained by sequential convolution, 
vide equation (1) of Alexander & Smith (1962). The 
actual sequence of combination of the components 
did not matter; the end result was the same. 

On close examination of the details of combining 
components in two-dimensional Aw, A20 space in the 
case where the axes of the monochromator crystal 
and that of the specimen crystal are parallel, i.e. the 
( + , - )  and (+, +) configurations, we find that this 
generality does not hold. The components fall into 
two classes with different modes of combination, so 
the sequence of combination is restricted. 

1. The basic components of  the apparatus function 

The elements that require careful scrutiny are 
those that are involved in the apparatus function as 
we define it here (see Appendix), namely, the source, 
$, the monochromator crystal, M, and the idealized 
specimen crystal, c, whose prime role in respect of 
the apparatus function is to provide dispersion and 
which, at this stage, is considered to be vanishingly 
small and to involve zero mosaic spread. The com- 
ponents of the apparatus function are the four distri- 
butions associated with the emissivity of $, the vari- 
ation of reflectivity along the length of M, the mosaic 
spread of M and the wavelength band arising from 
the interaction of the wavelength dispersion of M 
and of c. 

Examination of the change of shape in terms of t 
initially is too general and therefore not very instruc- 
tive. It is advisable to focus on a specific value of t 
(say 0.4) and to explore the effect of the various 
components on the overall shape. The situation for 
other values of t can then be identified and followed 
through. 

The contributions of the various components to the 
overall shape of the apparatus function are intro- 
duced as follows [t = 0.4]: 

( a ) The length of  the monochromator crystal. When 
the length of the monochromator crystal in the plane 
of diffraction is set as (say) M+MoM_ (see Fig. 1 in 
M88), this establishes the reference line, 0'00" for 
0c = 0 ° in Fig. l(a). It also establishes the lower and 
upper bounds, Z'_O'Z'+ and Z'_0"Z'~, respectively, 
indicated by the dashed lines at a slope of arctan(1/2) 
to the A20 axis. The locus of translation of the 
reflectivity distribution along the monochromator is 
parallel to these lines. Assuming that the reflectivity 
of M is uniform across its surface, it can be represen- 
ted by a rectangular distribution of unit height and 
length mlm2, which falls to zero outside the upper 
and lower bounds (see rM in Fig. la) .  

* Following the convention of Allison & Williams (1930), for 
the ( + , - )  configuration, Mathieson (1985, 1988a) nominated t 
values as negative. To avoid the mathematical problems associated 
with negative 0, Stevenson (1989) nominated t values as posldve. 
In the present text, we use the latter convention. The problem of 
a suitable nomenclature is not straightforward, being linked to the 
particular viewpoint adopted (see DuMond, 1937). 

(b) The length of  the source. In respect of the 
source contribution, it has been shown in $89 that 
one has to take into account not only the value of t 
but also the distance between S and M, d~, and that 
between M and c, d2. For values of d~ and d2 
appropriate to neutron sources, such as 3.5 and 1.5 m, 
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respectively, the locus of translation in Ato, A20 space 
of the centre point of the source corresponds to a line 
at - 5 0  ° to the A2O axis [see equation (17) in $89].* 

* In a strict sense, the slope for points on the source other than 
the centre differs to a very minor  extent from that at the centre 
[see equation (17) in $89]. Generally, the difference can be ignored. 

So, for a source length SiS  2 (say), symmetric about 
the centre point So, this corresponds to a band sis2 
in Ato, A20 space, indicated by dotted lines in Fig. 
l(a).  Again, the emissivity may be depicted by a 
rectangular distribution (if the emissivity is uniform) 
of length sls2 falling to zero outside the band (see es 
in Fig. la).  

°°°°" °o." 
. °°° 

°° t = 0.40 .." Z': ato ....." ...-... - 

...'""" ' "i~2 .. " " AtO A0=0 o " " 

• 

°° °.°'" - 

At0 

~- C 
/ 

~o z 

(a) (b) 

!/7 
z~20 
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Fig. 1. The components  of  the apparatus function in Ato, A2O space, detailed for 
t=0 .4 .  (a) The reflectivity distribution, rM, associated with the length of  the 
monochromator  crystal, M, is combined with the emissivity distribution, es, 
associated with the length of  the source, S. rM and es are here given as rectangular 
distributions and their product  lies within the full-line area, al~a2~a22aj2. Outside 
that area, the product  is zero. The length of  M establishes the reference line 0 '00"  
and also the lower and upper bounds,  Z'O'Z'+ and Z'~. O'Z',  m~, m2 (dashed lines). 
The size of the source establishes the left and right bounds, &, s2 (dotted lines). (b) 
The component  associated with the mosaic spread of  the monochromator  crystal, 
/~M, is now included. The area, a~a2~a22a~2 is reproduced here. The line L'OL" 
represents zero mosaic spread ( A 0 = 0  °) for t=0 .4 .  /13/13, /12/12, /11/11 represent 
decreasing limits of  mosaic spread. For  A3A3, the shape is unchanged but the new 
distribution is obtained from the product  of  the former distribution and the mosaic 
distribution. For/12/12, the shape is changed to six-sided, while for A~A~ (indicated 
as a triangular distribution), it reverts to four-sided but is determined by the length 
of  M and its mosaic spread. (c) The component  corresponding to the wavelength 
distribution, ,~, arising from vector combinat ion of  the wavelength dispersions of  
M and o fc  is shown as the line ,~_ )t ÷. The locus of  translation of  the distribution is 
parallel to the line at 45 ° to the/120 axis. 

(a) 

t 0 0.25 0.5 0.75 1.00 

S / /  ,/ / / / 

/ / / / 

1.5 2.0 

(b) 
/ 's' '¢ 

/ //~+~ / A+ / / 

Fig. 2. For t values from 0 to 2.0, the distribution (solid line) and the locus of translation (dashed line) are shown respectively for (a) 
the source, S, and (b) the wavelength dispersion, h. 
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The combination of these two components by 
multiplication yields a four-sided area, alla21a22a12 
(Fig. la ) ,  which we can designate, for brevity, MS. 

The way in which the source distribution and its 
locus of translation change with t from 0 to 2.0 is 
shown in Fig. 2(a). 

the four basic components. It may be noted that each 
additional component either leaves the area of the 
overall shape unchanged or truncates it to some 
extent. In no case is expansion of the area involved, 
a characteristic normally associated with the oper- 
ation of convolution. 

(c) The mosaic spread of  the monochromator 
crystal. The line for zero mosaic spread, i.e. dO = 0 °, 
in Ato, A20 space is determined by the value of t (see 
M88, p. 1038). This line corresponds to the locus of 
translation of the mosaic spread. For t = 0.4, this line 
is L'OL" in Fig. l(b). The mosaic spread is distributed 
about the line L'OL" as in Fig. l(b),  being represented 
as a triangular distribution. Interaction of the mosaic- 
spread distribution with the previous result of com- 
bining the M and S distributions involves multiplica- 
tion of MS by the mosaic-spread distribution, lz, to 
yield MS/z. If the triangular distribution extends to 
A3A3 (Fig. l b), then the area of the shape is 
unchanged but the distribution within it is modified. 
If it extends only to A2A2, then the shape is reduced, 
becoming six-sided. Extended only to A~A~, the shape 
is further truncated to become four-sided but now is 
determined essentially by the monochromator length 
and its mosaic spread. 

( d ) The wavelength distribution. The usual source of 
neutrons involves 'white' radiation, so the wavelength 
distribution of the source is relatively broadly peaked, 
see e.g. Arndt & Willis (1966). Of this, only a limited 
band is passed by the monochromator to the specimen 
crystal and this is further modified by interaction with 
the wavelength dispersion of c. This has been dealt 
with in M88 and is summarized in diagram form in 
Fig. 2(b). It will be seen that the vector combination 
of the wavelength dispersion of M and of c leads to 
the total angular range of the wavelength band in 
Ato, A20 space altering with change of t, first contract- 
ing and then expanding. Along 0'Z~_ (and ,,n"7"~+j,~ it 
expands linearly with t. For t = 0.4, the wavelength 
distribution and its locus of translation are shown in 
Fig. l(c). 

The combination of this fourth component, the 
wavelength distribution, A, involves its multiplication 
with the previous three-component distribution, 
leading to either an unchanged area, a reduced area 
or, for a rather selective combination, an eight-sided 
shape (see Fig. 5 in $89). 

Because, for t = 0.4, the slope (---50 °) of the locus 
of translation of the source distribution in Ato, A20 
space does not differ greatly from the slope (45 ° ) of 
the locus of translation of the wavelength distribution, 
the distinction between these two in this case is not 
readily demonstrated in a diagram. 

So, we end up with a distribution for the apparatus 
function which is the product of the distributions of 

2. The introduction of  other components 

When one has to introduce further components to 
establish the shapes of Bragg reflections in a realistic 
experimental situation, it is necessary to consider with 
some care how such components are to be combined 
with the apparatus function. 

In the case of the mosaic distribution, #(dw), of 
a real specimen crystal, each point on the distribution 
interacts with the apparatus function and superim- 
poses with appropriate weight on the corresponding 
results from the series of other settings of Ato on 
either side. The end result corresponds to the con- 
volution of the apparatus function with the mosaic 
distribution. 

For the physical size of the specimen crystal, the 
argument is a little more complicated and is depen- 
dent on the relative sizes of the specimen crystal and 
the monochromator. For the neutron case, the speci- 
men crystals are of length of the order of 1-2 mm 
(say), whereas the monochromator crystal is likely to 
be of length 25 mm or greater. The distance between 
these will be of the order of 1.0-1.5 m. So the angle 
subtended by a 1 mm crystal at the centre of the 
monochromator will be of the order of 0.04-0.12 °. 
The 'size' of the apparatus function in Ato, A20 space 
is tied up with the angular aperture of the mono- 
chromator crystal at the specimen crystal, c. With the 
size of M viewed from c being 10-20 mm (depending 
on 0M), this angular aperture is ca 0.4 to 1.2 °. So the 
interaction of the apparatus function with the speci- 
men crystal dimension corresponds to each point 
along the relevant dimension of the crystal interacting 
with a weight appropriate to that position (which will 
depend on the shape of the crystal and the reflecting 
power of that point) with the apparatus function as 
viewed from that point. Because of the relative aper- 
ture of the specimen crystal to that of the mono- 
chromator, the apparatus function as viewed from 
one end of the specimen crystal differs very little from 
that viewed from the other end so it is effectively 
constant. Under those circumstances, the appropriate 
mathematical operation is again convolution in two 
dimensions. As t changes, the combined shape involv- 
ing the crystal dimension has the same locus in 
aw, a20 space as was deduced in Mathieson (1984a). 

Illustration 

Having shown in M88 and $89, with square and 
triangular functions, how the various factors can 
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specifically influence the outer limits of the shapes 
of reflections with change in t, we here demonstrate 
examples of the variation of the apparatus function 
and hence of reflection shapes with more realistic 
parameters. 

With the dimensions for dl and d2 given above, the 
source has a distribution that is flat-topped for 
2.67 cm, with left and right edges composed of half- 
Gaussians each having a half-width at half-maximum 
of 0.67 cm (a total width at half maximum of 4.0 cm), 
and the wavelength distribution corresponded to a 
Gaussian peaking at 1.2 ]k and of full width at half- 
maximum (FWHM) 0.65 A. (The latter provides a 
reasonable substitute for a typical wavelength distri- 
bution because only the peak region is of significance 
for our present purpose.) The monochromator is 4 cm 
long with a d spacing that corresponds to a Bragg 
angle OM'-30 ° for A= 1.2 A and has a Gaussian 
mosaic spread with FWHM of 0.4 °. 

The resultant contoured calculated shapes of the 
apparatus function as it changes with 0c are given in 
Fig. 3 for values of t from 0 to 1.0 in steps of 0.25 

At0 

At0 

0.50 

0.00. 

-0.50. 

-1.00. 
- 

/ 
.oo -0'.50 o'.oo o15o ~20 (°) 

(a) 

1.5 

tJ05   o 2 jy 

A20 (o) 

(9) 

Fig. 3. Calculated shapes in Am, A20 (°) space of the apparatus 
function, for (a) t =0.25 contoured at three levels and (b) a 
composite of individual contoured shapes for t = 0 to 1.0 in steps 
of 0.25 and then 1.50 and 2.0, displaced along a slope of 1/2 with 
respect to the A20 axis. 

and then to 2.0 in a step of 0.5. Fig. 3(a) shows the 
shape for t=0.25,  while Fig. 3(b) provides a com- 
posite diagram where the reflection shapes for 
each t value are displaced along a slope of 
1/2 with respect to the d20 axis in such a manner 
as to stress the important role of the upper and lower 
bounds, Z'_O'Z'+ and Z~O"Z"_ (not shown, but see 
Fig. 1 a). The centre of each figure is at the origin of 
the particular shape. These shapes are in/1a~,/120 (0) 
space, i.e. the detector is not stepped when A¢o is 
stepped, so it is equivalent to an ~o scan. It is evident 
that, as t goes beyond 1.0, the shapes in Aoj,/120 
space involve considerable elongation, mainly along 
the /120 axis. 

As has been shown previously (Mathieson, 1985), 
one can make the shape more compact, particularly 
for high t values (and indeed have an essentially 
constant/120 width), by applying an affine transfor- 
mation to the data to convert them to &o,/120 (2) 
space, with the results shown in Fig. 4. In Fig. 4(a), 
the reflection shape for t = 0.25 is shown individually. 

Ato 

0.50- 

0.00- 

-0.50- 

- 1.00 
-1.oo -o.;o o.~o o.;o ~ 0  (2) 

(a) 

2.0 " - " ' ~  

1.5 

Am 1.0 ~ 
0.75 ~ 

0.5 

0.25 

o 
N \  

N 

-0.50 0.00 0.50 A20 ~2) 

(b) 

Fig. 4. Calculated shapes in &o, z120 (2) space of the apparatus 
function, for (a) t =0.25, contoured at three levels and (b) a 
composite of individual contoured shapes (reduced scale) for 
t = 0 to 1.0 in steps of 0.25 and then 1.50 and 2.0, displaced 
parallel to the &o axis. 
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Fig. 4(b) presents a composite diagram, but here the 
individual apparatus functions are displaced verti- 
cally, appropriate to the affine transformation for 
s = 2. In Ato, A20 ~2) space, because of the compaction, 
the problem of where to establish the truncation con- 
tour between background and Bragg reflection is 
facilitated and hence the estimate of integrated 
intensity can be more reliable, cf. Figs. 3 and 4. In 
terms of practical operations, this end can be achieved 
without mathematical procedure by applying a step 
equal to +2Ato to the detector for each +Ato step of 
the crystal, i.e. by an to-20-scan procedure. 

Comparison of Figs. 3 and 4 makes it clear that 
treating the shape in Aw, A20 <°) space involves the 
need for more 'background" measurements than is 
the case for Ato, A20 ~2) space. 

Discussion 

From the analysis above, we have arrived at the 
conclusion that, to simulate Bragg reflections in two- 
dimensional diffraction space, the components of the 
overall experimental arrangement fall into two 
groups; the components in one group being combined 
as a product and those in the second group by convo- 
lution. 

By contrast, in the case of one-dimensional Bragg 
profiles (Alexander & Smith, 1962), all components 
were dealt with in the same way, being combined by 
convolution 

The difference between the two-dimensional and 
one-dimensional cases can be indicated via the 
simpler nonmonochromator arrangement, which 
Alexander & Smith (1962) treated. 

In Aw, A20 space, following Mathieson (1982), we 
see that the components that contribute to the 
apparatus function consist of the source emissivity, tr, 
its wavelength distribution, A, and an idealized speci- 
men crystal, vanishingly small and with zero mosaic 
spread. The apparatus function is the product of the 
distributions, o- and A. However, when this two- 
dimensional distribution is projected onto the Ato axis 
to reproduce the one-dimensional profile (cf. 
Mathieson, 1984b, Fig. 6), it corresponds to the one- 
dimensional convolution of the projections on the Ato 
axis of the individual o- and A distributions. 

When additional components associated with a 
realistic specimen crystal or detector system are in- 
volved, the combining operation is convolution. 
Hence, for the nonmonochromator one-dimensional- 
profile case, it turns out that the combining operation, 
whether in respect of the apparatus function or addi- 
tional 'external' components, is the same. 

When dealing with two-dimensional diffraction 
space, such as Ato, A20 space, with or without a 
monochromator, the apparatus function is deter- 
mined as a product. For the combination of 'external '  

components, such as the mosaic spread and 
dimension of a specimen crystal and the size of the 
detector aperture or the point-spread function of a 
gas-type, television-type or solid-state position-sensi- 
tive detector, the appropriate procedure is convo- 
lution.* 

There is one significant advantage of the modelling 
approach compared with the setting-up of a library 
of reflection shapes (Wilkinson et al., 1988). In the 
latter, because the shape of a Bragg reflection involves 
components other than the wavelength dispersion, 
there is considerable difficulty in establishing con- 
sistent empirical truncation limits as 0c changes. In 
the former case, where the model shapes are syn- 
thesized by well defined functions, the truncation 
limits (which are presumed to define a definite ratio 
relative to the measure at infinity) need not be held 
constant but can be adjusted over the 0c range. The 
appropriate normalizing factor can be established 
from the theoretical model (Mathieson, 1982). 

Once established, the apparatus-function shapes 
hold until some change in the apparatus is made. In 
neutron diffraction, the apparatus function will gen- 
erally be the major distribution determining the 
diffraction shape. Contributions from mosaic spread 
and specimen crystal size will probably be of minor 
weight (cf  Roth & Lewit-Bentley, 1982, p. 679). 

APPENDIX 

What we refer to as the 'apparatus function' differs 
significantly from what others refer to as the 'reso- 
lution function'. The difference arises from the choice 
of components to be included. Thus, for example, 
Cochran (1969), in treating the matter of the 
resolution function of a nonmonochromator case, 
includes, with the source and its wavelength distribu- 
tion, the mosaic spread of the specimen crystal and 
also its size. In our analysis in two dimensions, we 
find that these latter components involve combining 
characteristics different from those of the former. 

While it is evident that the source and the mono- 
chromator, as fixed components, must be included in 
the apparatus function, one must also recognize that, 
in order to ensure a homogeneous group of com- 
ponents in the apparatus function, it is necessary to 
include a dispersing agent, the specimen crystal, for 
completeness. However, a key point is that a diffrac- 
tometer should ideally measure, in relation to a real 
specimen crystal, its (extinguished) reflectivity distri- 
bution [alias its mosaic spread; see Mathieson & 
Stevenson (1985) and Mathieson (1988b)]. So the speci- 
men crystal included in the apparatus function must 

* In situations where a monochromator is involved but its axis is 
perpendicular to that of the specimen crystal, the dispersions of M 
and c are at right angles so the situation is basically similar to the 
nonmonochromator case. 
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not involve the real characterist ics of  a spec imen 
except its d ispers ion capabil i ty.  The components  
associated with the real characterist ics of  the speci- 
men  crystal, namely  the mosaic  spread and its phy- 
sical d imensions ,  must  be long to a different group 
whose interact ions are model led  by convolution.  

We are grateful  to Dr J. K. Mackenzie  for extensive 
discussions on matters of  convolution.  

References 
ALEXANDER, L. E. & SMITH, G. S. (1962). Acta Cryst. 15, 983- 

1004. 
ALLISON, S. K. & WILLIAMS, J. H. (1930). Phys. Re,). 35, 149-154. 
ARNDT, U. W. & WILLIS, B. T. M. (1966). Single Crystal Diffrac- 

tometry. Cambridge Univ. Press. 
COCHRAN, W. (1969). Acta Cryst. A25, 95-101. 
CONVERT, P. • FORSYTH, J. B. (1983). Editors. Position-Sensitive 

Detection of Thermal Neutrons. London: Academic Press. 
DENNE, W. A. (1977). Acta Cryst. A33, 438-440. 
DUMOND, J. W. M. (1937). Phys. Rev. 52, 872-883. 

LEHMANN, M. S., KUHS, W. H., MCINTYRE, G. J., WILKINSON, 
C. & ALLIBON, J. R. (1989). J. Appl. Cryst. 22, 562-568. 

MATHIESON, A. McL. (1982). Acta Cryst. A38, 378-387. 
MATHIESON, A. McL. (1983). J. Appl. Cryst. 16, 257-258. 
MATHIESON, A. McL. (1984a). J. Appl. Cryst. 17, 207-210. 
MATHIESON, A. McL. (1984b). Acta Cryst. A40, 355-363. 
MATHIESON, A. McL. (1985). Acta Cryst. A41,309-316. 
MATHIESON, A. McL. (1988a). Acta Cryst. A44, 1036-1042. 
MATHIESON, A. McL. (1988b). Aust. J. Phys. 41,393-402. 
MATHIESON, A. McL. & STEVENSON, A. W. (1985). Acta Cryst. 

A41,290-296. 
ROTH, M. & LEWIT-BENTLEY, A. (1982). Acta Cryst. A35, 670- 

679. 
SCHOENBORN, B. P. (1983). Acta Cryst. A39, 315-321. 
SJ6L1N, L. & WLODAWER, A. (1981). Acta Cryst. A37, 594-604. 
SPENCER, S. A. & KOSSIAKOFF, A. A. (1980). J. Appl. Cryst. 13, 

563-571. 
STANSFIELD, R. F. D., THOMAS, M., MASON, S., NELMES, R. J., 

TIBBALLS, J. E. & ZHONG, W. L. (1983). In Position-Sensitive 
Detection of Thermal Neutrons, edited by P. CONVERT & J. B. 
FORSYTH, pp. 365-371. London: Academic Press. 

STEVENSON, A. W. (1989). Acta Cryst. A45, 75-85. 
WILKINSON, C., KHAMIS, H. M., STANSFIELD, R. F. D. & 

MCINTYRE, G. J. (1988). J. Appl. Cryst. 21,471-476. 

Acta  Cryst .  (1993). A49, 661-667 

Extinction Corrections from Equivalent Reflections 

BY E. N. MASLEN AND N. SPADACCINI 

Crystal lography Centre, University o f  Western Austral ia,  NedIands ,  Western Austral ia  6009, Austral ia  

(Recei,)ed 1 April 1992; accepted 15 February 1993) 

Abstract 

Corrections for secondary  extinction evaluated from 
the diffraction intensit ies for equivalent  reflections 
with different path lengths provide an independen t  
check on values that min imize  differences between 
observed and  calculated structure factors. Com- 
par ison of  equivalent  intensit ies also avoids any 
ext inct ion-parameter  bias,  which originates in corre- 
lat ion of  the extinction corrections with bonding-  
electron contr ibut ions to X-ray structure factors. Cor- 
rections from the compar i son  of  equivalent  reflections 
for several X-ray diffraction studies on small  crystals 
of  ionic compounds  are marked ly  less than  those that 
min imize  differences between observed and calcu- 
lated structure factors. The discrepancies  that  origi- 
nate in ext inct ion-parameter  bias are exacerbated by 
the unfavourable  form of  the statistical dis t r ibut ion 
funct ion for the residuals  when  differences between 
observed and calculated structure factors are mini-  
mized. Analysis  of  intensities for equivalent  reflec- 
tions, a l though more demanding  experimentally,  pro- 
vides least-squares residuals closer to the normal  
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distr ibution required for reliability in nonl inear  least- 
squares processes. 

Introduction 

The k inemat ic  theory of  diffraction, readily derived 
from the first Born approximat ion ,  assumes that the 
radiat ion is diffracted no more than once in a crystal. 
At the Bragg condit ion,  the diffracted beam is 
necessari ly oriented so that second- and higher-order  
elastic coherent  scattering occurs. Kinemat ic  theory 
assumes the scattering contr ibut ions to be so small  
that second- and  higher-order  processes can be 
neglected. This assumpt ion  is valid and accurate for 
weak reflections from small  crystals. In pr inciple ,  
measured  structure factors for stronger reflections 
may  be corrected for high-order  components  to the 
scattering by per turbat ion techniques,  i f  k inemat ic  
theory is obeyed approximately .  

Estimates of  extinction corrections independen t  of  
any structural model  have been reported for crystals 
in the form of  large slabs cut paral lel  to a desired 
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